Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Korean Circulation Journal ; : 255-263, 2014.
Article in English | WPRIM | ID: wpr-62391

ABSTRACT

BACKGROUND AND OBJECTIVES: Differentiation and de-differentiation of vascular smooth muscle cells (VSMCs) are important events in atherosclerosis and restenosis after angioplasty. MicroRNAs are considered a key regulator in cellular processes such as differentiation, proliferation, and apoptosis. Here, we report the role of new miR-18a-5p microRNA and its downstream target genes in VSMCs and in a carotid balloon injury model. MATERIALS AND METHODS: Expression of miR-18a-5p and its candidate genes was examined in VSMCs and in a carotid artery injury model by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and microRNA microarray analysis. VSMC differentiation marker genes including smooth muscle (SM) alpha-actin and SM22alpha were determined by Western blot, qRT-PCR, and a SM22alpha promoter study. Gene overexpression or knockdown was performed in VSMCs. RESULTS: miR-18a-5p was upregulated in the rat carotid artery at the early time after balloon injury. Transfection of the miR-18a-5p mimic promoted the VSMC differentiation markers SM alpha-actin and SM22alpha. In addition, miR-18a-5p expression was induced in differentiated VSMCs, whereas it decreased in de-differentiated VSMCs. We identified syndecan4 as a downstream target of miR-18-5p in VSMCs. Overexpression of syndecan4 decreased Smad2 expression, whereas knockdown of syndecan4 increased Smad2 expression in VSMCs. Finally, we showed that Smad2 induced the expression of VSMC differentiation marker genes in VSMCs. CONCLUSION: These results indicate that miR-18a-5p is involved in VSMC differentiation by targeting syndecan4.


Subject(s)
Animals , Rats , Actins , Angioplasty , Antigens, Differentiation , Apoptosis , Atherosclerosis , Blotting, Western , Carotid Arteries , Carotid Artery Injuries , Cell Differentiation , Microarray Analysis , MicroRNAs , Muscle, Smooth , Muscle, Smooth, Vascular , Polymerase Chain Reaction , Smad2 Protein , Syndecan-4 , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL